
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Winter 2019

1 Instructor: Daniel Llamocca

Solutions - Homework 1
(Due date: January 17th @ 5:30 pm)

Presentation and clarity are very important!

PROBLEM 1 (27 PTS)
a) Simplify the following functions using ONLY Boolean Algebra Theorems. For each resulting simplified function, sketch the

logic circuit using AND, OR, XOR, and NOT gates. (14 pts)

✓ 𝐹 = 𝐴̅(𝐵 + 𝐶̅) + 𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
✓ 𝐹(𝑋, 𝑌, 𝑍) = ∏(𝑀2, 𝑀4, 𝑀6, 𝑀7)

✓ 𝐹 = (𝑍 + 𝑋)(𝑍̅ + 𝑌̅)(𝑌̅ + 𝑋)

✓ 𝐹 = (𝑋 + 𝑌̅̅ ̅̅ ̅̅ ̅̅)𝑍 + 𝑋̅𝑌̅𝑍̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

✓ 𝐹 = 𝐴̅(𝐵 + 𝐶̅) + 𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐴̅(𝐵 + 𝐶̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 𝐴̅ = (𝐴 + 𝐵 + 𝐶̅̅̅ ̅̅ ̅̅ ̅̅). 𝐴̅ = (𝐵 + 𝐶̅̅̅ ̅̅ ̅̅ ̅̅). 𝐴̅ = 𝐴̅𝐵̅𝐶

✓ 𝐹 = (𝑍 + 𝑋)(𝑍̅ + 𝑌̅)(𝑋 + 𝑌̅) = (𝑍 + 𝑋)(𝑍̅ + 𝑌̅) (Consensus Theorem)

(𝑍 + 𝑋)(𝑍̅ + 𝑌̅) = 𝑍𝑌̅ + 𝑍̅𝑋 + 𝑋𝑌̅ = 𝑍𝑌̅ + 𝑍̅𝑋 (Consensus Theorem)

✓ 𝐹(𝑋, 𝑌, 𝑍) = ∏(𝑀2, 𝑀4, 𝑀6, 𝑀7) = ∑(𝑚0, 𝑚1, 𝑚3, 𝑚5) = 𝑋̅𝑌̅𝑍̅ + 𝑋̅𝑌̅𝑍 + 𝑋̅𝑌𝑍 + 𝑋𝑌̅𝑍 = 𝑋̅𝑌̅ + 𝑋̅𝑌𝑍 + 𝑋𝑌̅𝑍

𝐹(𝑋, 𝑌, 𝑍) = 𝑋̅𝑌̅ + 𝑋̅𝑌𝑍 + 𝑋𝑌̅𝑍 = 𝑋̅(𝑌̅ + 𝑌𝑍) + 𝑋𝑌̅𝑍 = 𝑋̅(𝑌̅ + 𝑍) + 𝑋𝑌̅𝑍 = 𝑋̅𝑌̅ + 𝑋̅𝑍 + 𝑋𝑌̅𝑍

𝐹(𝑋, 𝑌, 𝑍) = 𝑋̅𝑌̅ + 𝑋̅𝑍 + 𝑋𝑌̅𝑍 = 𝑋̅𝑌̅ + 𝑍(𝑋̅ + 𝑋𝑌̅) = 𝑋̅𝑌̅ + 𝑍(𝑋̅ + 𝑌̅) = 𝑋̅𝑌̅ + 𝑍𝑋̅ + 𝑍𝑌̅

✓ 𝐹 = (𝑋 + 𝑌̅̅ ̅̅ ̅̅ ̅̅)𝑍 + 𝑋̅𝑌̅𝑍̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝑋 + 𝑌̅̅ ̅̅ ̅̅ ̅̅)𝑍̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 𝑋̅𝑌̅𝑍̅̅̅ ̅̅ ̅̅ = (𝑋 + 𝑌 + 𝑍̅)(𝑋 + 𝑌 + 𝑍) = (𝐴 + 𝑍̅)(𝐴 + 𝑍), 𝐴 = 𝑋 + 𝑌

𝐹 = (𝐴 + 𝑍̅)(𝐴 + 𝑍) = 𝐴 = 𝑋 + 𝑌

X

f

Y Z

A
B

C

f

X f

Y

X

f

Y Z

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Winter 2019

2 Instructor: Daniel Llamocca

b) Using ONLY Boolean Algebra Theorems, demonstrate that the XOR operation is associative: (5 pts)
(𝑎𝑏)𝑐 = 𝑎(𝑏𝑐) = 𝑏(𝑎𝑐)

(𝑎𝑏)𝑐 = (𝑎𝑏̅ + 𝑎̅𝑏)𝑐 = (𝑎𝑏̅ + 𝑎̅𝑏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑐 + (𝑎𝑏̅ + 𝑎̅𝑏)𝑐̅ = (𝑎𝑏 + 𝑎̅𝑏̅)𝑐 + (𝑎𝑏̅ + 𝑎̅𝑏)𝑐̅ = 𝑎𝑏𝑐 + 𝑎̅𝑏̅𝑐 + 𝑎𝑏̅𝑐̅ + 𝑎̅𝑏𝑐̅ = ∑ 𝑚(7,1,4,2).

𝑎(𝑏𝑐) = 𝑎(𝑏𝑐̅ + 𝑏̅𝑐) = 𝑎(𝑏𝑐 + 𝑏̅𝑐̅) + 𝑎̅(𝑏𝑐̅ + 𝑏̅𝑐) = 𝑎𝑏𝑐 + 𝑎𝑏̅𝑐̅ + 𝑎̅𝑏𝑐̅ + 𝑎̅𝑏̅𝑐 = ∑ 𝑚(7,4,2,1).

𝑏(𝑎𝑐) = (𝑎𝑐)𝑏 = (𝑎𝑐̅ + 𝑎̅𝑐)𝑏 = (𝑎𝑐 + 𝑎̅𝑐̅)𝑏 + (𝑎𝑐̅ + 𝑎̅𝑐)𝑏̅ = 𝑎𝑐𝑏 + 𝑎̅𝑐̅𝑏 + 𝑎𝑐̅𝑏̅ + 𝑎̅𝑐𝑏̅ = ∑ 𝑚(7,2,4,1).
* Note that 𝑥𝑦 = 𝑦𝑥

c) For the following Truth table with two outputs: (8 pts)

▪ Provide the Boolean functions using the Canonical Sum of Products (SOP), and Product of Sums
(POS).

▪ Express the Boolean functions using the minterms and maxterms representations.
▪ Sketch the logic circuits as Canonical Sum of Products and Product of Sums.

Sum of Products Product of Sums
𝑓1 = 𝑋̅𝑌̅𝑍 + 𝑋̅𝑌𝑍̅ + 𝑋̅𝑌𝑍 + 𝑋𝑌̅𝑍̅ + 𝑋𝑌𝑍̅
𝑓2 = 𝑋̅𝑌𝑍̅ + 𝑋̅𝑌𝑍 + 𝑋𝑌̅𝑍 + 𝑋𝑌𝑍̅ + 𝑋𝑌𝑍

𝑓1 = (𝑋 + 𝑌 + 𝑍)(𝑋̅ + 𝑌 + 𝑍̅)(𝑋̅ + 𝑌̅ + 𝑍̅)
𝑓2 = (𝑋 + 𝑌 + 𝑍)(𝑋 + 𝑌 + 𝑍̅)(𝑋̅ + 𝑌 + 𝑍)

Minterms and maxterms: 𝑓1 = ∑(𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚6) = ∏(𝑀0, 𝑀5, 𝑀7).

𝑓2 = ∑(𝑚2, 𝑚3, 𝑚5, 𝑚6, 𝑚7) = ∏(𝑀0, 𝑀1, 𝑀4).

x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

f1 f2

0 0

1 0

1 1

1 1

1 0

0 1

1 1

0 1

X

f1

Y ZX

f1

Y Z

f2

f2

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Winter 2019

3 Instructor: Daniel Llamocca

PROBLEM 2 (25 PTS)

a) Construct the truth table describing the output of the following circuit and write the simplified Boolean equation (6 pts).

𝑓 = 𝑥̅ + 𝑦 + 𝑧̅

b) Complete the timing diagram of the logic circuit whose VHDL description is shown below: (6 pts)

library ieee;

use ieee.std_logic_1164.all;

entity circ is

 port (a, b, c: in std_logic;

 f: out std_logic);

end circ;

architecture struct of circ is

 signal x, y: std_logic;

begin

 x <= a xor (not c);

 y <= x nand b;

 f <= y and (not b);

end struct;

c) The following is the timing diagram of a logic circuit with 3 inputs. Sketch the logic circuit that generates this waveform.

Then, complete the VHDL code. (8 pts)

library ieee;

use ieee.std_logic_1164.all;

entity wav is

 port (a, b, c: in std_logic;

 f: out std_logic);

end wav;

architecture struct of wav is

begin

 f <= not(b) or (a and c);

end struct;

a

f

b

y

c

x

x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

t

t f

1 1

0 1

0 1

1 1

1 1

0 0

0 1

1 1

f

x

z

y

a

f

b

c

11

a b c

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

f

1

1

0

0

1

1

0

1

c

ab

0

1

00 01 11 10

1 0 0 1

10

a

f

c

b

𝑓 = 𝑏̅ + 𝑎𝑐 = 𝑏̅ + 𝑎𝑐

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Winter 2019

4 Instructor: Daniel Llamocca

d) Complete the timing diagram of the following circuit: (5 pts)

PROBLEM 3 (25 PTS)
▪ A numeric keypad produces a 4-bit code as shown below. We want to design a logic circuit that converts each 4-bit code to

a 7-segment code, where each segment is an LED: A LED is ON if it is given a logic ‘1’. A LED is OFF if it is given a logic ‘0’.
✓ Complete the truth table for each output (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔).

✓ Provide the simplified expression for each output (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔). Use Karnaugh maps for 𝑐, 𝑑, 𝑒, 𝑓, 𝑔 and the Quine-

McCluskey algorithm for 𝑎, 𝑏. Note: It is safe to assume that the codes 1100 to 1111 will not be produced by the keypad.

a

b

c

d

e

f
g

6:

X Y Z W

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

a b c d e f g

1 1 1 1 0 1 1

Value

0

1

2

3

4

5

6

7

8

9

P

H

1 2 3

4 5 6

7 8 9 ? 7

x

y

z

w

1:0: 2: 3: 4:

7: 9:8:

H 0 P

5:

P: H:

a

x

b

c

f

x

y

y

f

b

a

c

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Winter 2019

5 Instructor: Daniel Llamocca

1 0

0 1

zw

xy

00

00 01

X 1

X 1

11 10

1 0

1 1

X 0

X 0

01

11

10

dX Y Z W

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

a b c d e f g

1 1 1 1 1 1 0

0 1 1 0 0 0 0

1 1 0 1 1 0 1

1 1 1 1 0 0 1

0 1 1 0 0 1 1

1 0 1 1 0 1 1

1 0 1 1 1 1 1

1 1 1 0 0 0 0

1 1 1 1 1 1 1

1 1 1 1 0 1 1

1 1 0 0 1 1 1

0 1 1 0 1 1 1

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

Value

0

1

2

3

4

5

6

7

8

9

P

H

1 1

1 1

zw

xy

00

00 01

X 1

X 1

11 10

1 1

0 1

X 1

X 0

01

11

10

c

1 0

0 0

zw

xy

00

00 01

X 1

X 0

11 10

0 0

1 1

X 1

X 1

01

11

10

e

X

1 1

0 1

zw

xy

00

00 01

X 1

X 1

11 10

0 0

0 1

X 1

X 1

01

11

10

f

0 1

0 1

zw

xy

00

00 01

X 1

X 1

11 10

1 0

1 1

X 1

X 1

01

11

10

g

𝑐 = 𝑦 + 𝑧̅ + 𝑤
𝑑 = 𝑥𝑧̅ + 𝑥̅𝑦̅𝑤̅ + 𝑥̅𝑦̅𝑧 + 𝑧̅𝑤𝑦 + 𝑧𝑤̅𝑦
𝑒 = 𝑤̅𝑦̅ + 𝑧𝑤̅ + 𝑥𝑧
𝑓 = 𝑥 + 𝑧̅𝑤̅ + 𝑦𝑧̅ + 𝑦𝑤̅
𝑔 = 𝑥 + 𝑧𝑤̅ + 𝑦𝑧̅ + 𝑦̅𝑧

▪ 𝑎 = ∑ 𝑚(0,2,3,5,6,7,8,9,10) + ∑ 𝑑(12,13,14,15).

Too many minterms. We better optimize: 𝑎̅ = ∑ 𝑚(1,4,11) + ∑ 𝑑(12,13,14,15)

Number

of ones

4-literal

implicants

3-literal

implicants

2-literal

implicants

1-literal

implicants

1
 m1 = 0001

 m4 = 0100 ✓
m4,12 = -100

2 m12= 1100 ✓
m12,13 = 110- ✓

m12,14 = 11-0 ✓

m12,13,14,15 = 11--

m12,14,13,15 = 11-- ✓

3

 m11= 1011 ✓

m13= 1101 ✓

m14= 1110 ✓

m13,15 = 11-1 ✓

m14,15 = 111- ✓

m11,15 = 1-11

4 m15= 1111 ✓

𝑎̅ = 𝑥̅𝑦̅𝑧̅𝑤 + 𝑦𝑧̅𝑤̅ + 𝑥𝑧𝑤 + 𝑥𝑦

Prime Implicants
Minterms

1 4 11

m1 𝑥̅𝑦̅𝑧̅𝑤 X

m4,12 𝑦𝑧̅𝑤̅ X

m11,15 𝑥𝑧𝑤 X

m12,13,14,15 𝑥𝑦

𝑎̅ = 𝑥̅𝑦̅𝑧̅𝑤 + 𝑦𝑧̅𝑤̅ + 𝑥𝑧𝑤  𝑎 = (𝑥 + 𝑦 + 𝑧 + 𝑤̅)(𝑦̅ + 𝑧 + 𝑤)(𝑥̅ + 𝑧̅ + 𝑤̅)

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Winter 2019

6 Instructor: Daniel Llamocca

▪ 𝑏 = ∑ 𝑚(0,1,2,3,4,7,8,9,10,11) + ∑ 𝑑(12,13,14,15).
Too many minterms. We better optimize: 𝑏̅ = ∑ 𝑚(5,6) + ∑ 𝑑(12,13,14,15)

Number

of ones

4-literal

implicants

3-literal

implicants

2-literal

implicants

1-literal

implicants

2

 m5 = 0101 ✓

m6 = 0110 ✓

m12= 1100 ✓

m5,13 = -101

m6,14 = -110

m12,13 = 110- ✓

m12,14 = 11-0 ✓

m12,13,14,15 = 11--

m12,14,13,15 = 11-- ✓

3
 m13= 1101 ✓

 m14= 1110 ✓

m13,15 = 11-1 ✓

m14,15 = 111- ✓

4 m15= 1111 ✓

𝑏̅ = 𝑥̅𝑦̅𝑧̅𝑤 + 𝑦𝑧̅𝑤̅ + 𝑥𝑧𝑤 + 𝑥𝑦

Prime Implicants
Minterms

5 6

m5,13 𝑦𝑧̅𝑤 X

m6,14 𝑦𝑧𝑤̅ X

m12,13,14,15 𝑥𝑦

𝑏̅ = 𝑦𝑧̅𝑤 + 𝑦𝑧𝑤̅  𝑏 = (𝑦̅ + 𝑧 + 𝑤̅)(𝑦̅ + 𝑧̅ + 𝑤)

PROBLEM 4 (12 PTS)

▪ Design a logic circuit (simplify your circuit) that opens a lock (𝑓 = 1) whenever the user presses the correct number on each

numpad (numpad 1: 7, numpad2: 2). The numpad encodes each decimal number using BCD encoding (see figure). We
expect that the 4-bit groups generated by each numpad be in the range from 0000 to 1001. Note that the values from

1010 to 1111 are assumed not to occur.

Suggestion: Create two circuits: one that verifies the first number (7), and another that verifies the second number (2).
Then perform the AND operation on the two outputs. This avoids creating a truth table with 8 inputs.

Numpad 1

Numpad 2

x y z w

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

Number

pressed

0

1

2

3

4

5

6

7

8

9

1 2 3

4 5 6

7 8 9

0

1 2 3

4 5 6

7 8 9

0

BCD code

x y z w

x y z w ?
F

a
b
c
d
e
f
g
h

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Winter 2019

7 Instructor: Daniel Llamocca

𝐹 = 𝑏𝑐𝑑𝑓𝑔̅ℎ̅ = (𝑏𝑐𝑑)(𝑓𝑔̅ℎ̅)

PROBLEM 5 (11 PTS)
▪ The following die has a sensor on each side. Whenever a side rests on a surface, the sensor on that side generates a logic

‘1’ (transmitted wirelessly to a controller); otherwise, it generates a ‘0’. The sensors outputs are named S1, S2, S3, S4, S5, S6.

▪ We want to design a circuit that reads the state of the 6 sensors and outputs a 3-bit value L representing the decimal value

(unsigned integer) of the opposite side (upper surface). The output L is connected to 3 LEDs: A LED ON is represented by

a logic ‘1’, while the LED OFF is represented by ‘0’. For example, in the figure below:

✓ The resting side has six dots. This means that the state of the sensors is S6=1, S5=0, S4=0, S3=0, S2=0, S1=0.

✓ The opposite side (upper surface) has one dot representing the decimal number ‘1’. Thus, the output L must be 001.

▪ Under normal operation, we expect only one sensor activated at a time. However, due to a variety of problems, we might
have the following cases:
✓ Two or more sensors produce a ‘1’ at the same time: Here, the state of the LEDs must be 000.

✓ No sensor produces a ‘1’: In this case, the state of the LEDs must be 000.

▪ Using the state of the sensors as inputs, provide the Boolean expression for each LED: L2, L1, L0. First, build the truth

table where the inputs are S6-S1 and the outputs are L2-L0.

Resulting

number: 1

?
S6

S5

S4

S3

S2

S1

3 L

L0

L1

L2

L2 L1 L0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Number

-

1

2

3

4

5

6

-

State of Sensors
S6 S5 S4 S3 S2 S1

1 0 0 0 0 0

f1 f2

0 0

0 0

0 1

0 0

0 0

0 0

0 0

1 0

0 0

0 0

X X

X X

X X

X X

X X

X X

0 0

0 0

xy

00 01

X 0

X

11

0 1

0 0

X

X

01

11

10

0 0

 0

xy

00

00 01

X

X

11 10

0 0

1

X

X X

01

11

10

Y

f2

F

W

numpad 1

𝑓1 = 𝑦𝑧𝑤

𝑓2 = 𝑦𝑧𝑤̅

𝑏 𝑑

𝑓 ℎ𝑔

Y Z

𝑐

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Winter 2019

8 Instructor: Daniel Llamocca

𝐿2 = 𝑆1̅̅ ̅ 𝑆2̅̅ ̅𝑆3𝑆4 ̅̅ ̅̅ 𝑆5̅̅ ̅ 𝑆6̅̅ ̅ + 𝑆1̅̅ ̅𝑆2𝑆3̅̅ ̅𝑆4̅̅ ̅ 𝑆5̅̅ ̅ 𝑆6̅̅ ̅ + 𝑆1𝑆2̅̅ ̅ 𝑆3̅̅ ̅ 𝑆4̅̅ ̅ 𝑆5̅̅ ̅ 𝑆6̅̅ ̅

𝐿1 = 𝑆1̅̅ ̅ 𝑆2̅̅ ̅ 𝑆3̅̅ ̅ 𝑆4̅̅ ̅𝑆5𝑆6̅̅ ̅ + 𝑆1̅̅ ̅ 𝑆2̅̅ ̅ 𝑆3̅̅ ̅𝑆4𝑆5̅̅ ̅ 𝑆6̅̅ ̅ + 𝑆1𝑆2̅̅ ̅ 𝑆3̅̅ ̅ 𝑆4̅̅ ̅ 𝑆5̅̅ ̅ 𝑆6̅̅ ̅

𝐿0 = 𝑆1̅̅ ̅ 𝑆2̅̅ ̅ 𝑆3̅̅ ̅ 𝑆4̅̅ ̅ 𝑆5̅̅ ̅𝑆6 + 𝑆1̅̅ ̅𝑆2̅̅ ̅𝑆3̅̅ ̅𝑆4𝑆5̅̅ ̅ 𝑆6̅̅ ̅ + 𝑆1̅̅ ̅𝑆2𝑆3̅̅ ̅ 𝑆4̅̅ ̅ 𝑆5̅̅ ̅ 𝑆6̅̅ ̅

Number

-

1

2

3

4

5

6

-

S1 S2 S3 S4 S5 S6

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

...

L2 L1 L0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

0 0 0

